Iceland Liechtenstein Norway grants

Potential implications of artificial miRNAs in cancer therapy

Sergiu Chira, PhD

Oslo, September 19

Non-coding DNA covers most of the human genome

miRNA biogenesis and mechanism of gene silencing

- One miRNA can target multiple genes
- One gene can be targeted by multiple mRNAs

Cell fate specification	Fat metabolism
DNA repair	Insulin secretion
DNA methylation	Stem cell maintenance
Cell proliferation'	Resistance to viral infection
Cell differentiation	Inflammation
Developmental timing	Immunomodulation
Cell cycle control	Apoptosis
Angiogenesis control	Proinflammatory stimuli
Pattern formation	Antiinflammatory stimuli
Morphogenesis regulation	Neuronal differentiation
Circardian rhythm	Neurogenesis
Synapse function	Neuroprotection

Inoue J & Inazawa J, J. Hum. Gen. 2021 Ha TY, Immune Network 2011

Deregulation of miRNA expression patterns is associated with hallmarks of cancers

Cancer cells exhibit epigenetic changes of miRNA genes

Dysregulation of miR-181 expression is widely distributed in a large array of human cancers

miRNA-based approaches and challenges for cancer therapy

miRNA therapeutics in cancer clinical trials.

Drug name	Therapeutic agent	Disease	Delivery system	Administration route	Company	Current status	Clinical trials identifier
MRX34	miR-34a mimic	Multiple solid tumors	LNPs-Liposomes	IV	Mirna Therapeutics, Inc.	Phase I (Terminated-2016) Phase I/II (Withdrawn-2016)	NCT01829971 NCT02862145
TargomiRs	miR-16 mimic	Malignant pleural mesothelioma and non-small cell lung cancer	EGFR-antibody targeted minicells	IV	EnGenelC Limited	Phase I (Completed-2017)	NCT02369198
Cobomarsen	Anti-miR- 155	T-cell leukemia/lymphoma	LNA-mediated	Subcutaneous injection or IV	miRagen Therapeutics, Inc.	Phase I (Completed-2020) Phase II (Terminated-2020) Phase II (Terminated-2020)	NCT02580552 NCT03713320 NCT03837457

Kargutkar et al, Clin. Gen. 2020 Kara G et al, Adv. Drug Del. Rev. 2022

Understanding the basis of miRNA-mRNA interaction might help design artificial miRNAs with reduced off-target effects

It is though that miRNA's "seed" region is key element for target mRNA selectivity

> Can this model explain the marked differences in numbers of miRNA's targets?

Twenty-five miRNAs analyzed in the RNA-seq experiments

hsa-let-7c-5p	UGAGGUAGUAGGUUGUAUGGUU	31
hsa-miR-107	AGCAGCAUUGUACAGGGCUAUCA	35
hsa-miR-10a-5p	UACCCUGUAGAUCCGAAUUUGUG	32
hsa-miR-124-3p	UAAGGCACGCGGUGAAUGCC	151
hsa-miR-126-3p	UCGUACCGUGAGUAAUAAUGCG	11
hsa-miR-126-5p	CAUUAUUACUUUUGGUACGCG	48
hsa-miR-133b	UUUGGUCCCCUUCAACCAGCUA	108
hsa-miR-142-3p	UGUAGUGUUUCCUACUUUAUGGA	108
hsa-miR-145-5p	GUCCAGUUUUCCCAGGAAUCCCU	82
hsa-miR-146a-5p	UGAGAACUGAAUUCCAUGGGUU	42
hsa-miR-155-5p	UUAAUGCUAAUCGUGAUAGGGGU	154
hsa-miR-15a-5p	UAGCAGCACAUAAUGGUUUGUG	108
hsa-miR-16-5p	UAGCAGCACGUAAAUAUUGGCG	122
hsa-miR-17-5p	CAAAGUGCUUACAGUGCAGGUAG	74
hsa-miR-193b-3p	AACUGGCCCUCAAAGUCCCGCU	102
hsa-miR-200a-3p	UAACACUGUCUGGUAACGAUGU	35
hsa-miR-200b-3p	UAAUACUGCCUGGUAAUGAUGA	126
hsa-miR-200c-3p	UAAUACUGCCGGGUAAUGAUGGA	93
hsa-miR-206	UGGAAUGUAAGGAAGUGUGUGG	206
hsa-miR-210-3p	CUGUGCGUGUGACAGCGGCUGA	43
hsa-miR-21-5p	UAGCUUAUCAGACUGAUGUUGA	11
hsa-miR-31-5p	AGGCAAGAUGCUGGCAUAGCU	85
hsa-miR-34a-5p	UGGCAGUGUCUUAGCUGGUUGU	155
hsa-miR-9-3p	AUAAAGCUAGAUAACCGAAAGU	182
hsa-miR-9-5p	UCUUUGGUUAUCUAGCUGUAUGA	106

Higher order structures of miRNAs might impose an additional constrain for target genes selection

<u>Sci Rep.</u> 2020; 10: 453. Published online 2020 Jan 16. doi: <u>10.1038/s41598-019-57289-8</u> PMCID: PMC6965629 PMID: <u>31949213</u>

Endogenous and artificial miRNAs explore a rich variety of conformations: a potential relationship between secondary structure and biological functionality

<u>C. M. A. Gangemi,¹ S. Alaimo,² A. Pulvirenti,² Sara García-Viñuales,³ D. Milardi,³ A. P. Falanga,⁴ M. E. Fragalà,¹ G. Oliviero,⁴ G. Piccialli,⁵ N. Borbone,⁵ A. Ferro,¹² A. D'Urso,¹¹ C. M. Croce,⁶ and <u>R. Purrello</u>¹</u>

miR-15a

miR-15b

Is there any relation between miR-181 family members primary sequence, secondary structure and biological function?

FEBS Letters

RESEARCH LETTER

Artificial miRNAs derived from miR-181 family members have potential in cancer therapy due to an altered spectrum of target mRNAs

Sergiu Chira¹ (b), Cristina Ciocan¹, Cecilia Bica¹, George A. Calin^{2,3} (b) and Ioana Berindan-Neagoe¹

1 Research Center for Functional Genomics, Biomedicine, and Translational Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania

2 Translational Molecular Pathology, MD Anderson Cancer Center, Texas State University, Houston, TX, USA

3 The RNA Interference and Non-codingRNA Center, MD Anderson Cancer Center, Texas State University, Houston, TX, USA

Correspondence

I. Berindan-Neagoe, Research Center for Functional Genomics, Biomedicine, and Translational Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, 23 Gheorghe Marinescu Street, 400337 Cluj-Napoca, Romania. Tel.: +40374834810 E-mail: ioana.neagoe@umfcluj.ro

(Received 27 February 2023, revised 8 May 2023, accepted 22 May 2023)

doi:10.1002/1873-3468.14673

Edited by Qinghua Cui

miRNAs are a class of noncoding RNAs with gene regulation properties, and they function as key factors in cell homeostasis. The interaction of miRNAs with their target mRNAs is largely considered to rely on sequence complementarity; however, some evidence indicates that mature miRNAs can adopt diverse conformations with implications for their function. Using the oncogenic miR-181 family as a study model, we suggest that a potential relationship between the primary sequence and secondary structure of miRNAs may have an impact on the number and spectrum of targeted cellular transcripts. We further emphasize that specific alterations in miR-181 primary sequences might impose certain constraints on target gene selection compared with the wild-type sequences, leading to the targeting of new transcripts with upregulated function in cancer.

Keywords: cancer therapy; miR-181; miRNAs; secondary structure; sequence alterations; target genes

Check for updates

miR-181 family members' primary sequence and predicted target genes

miR-181 family members are highly conserved in the seed region

miR-181 family members share a high number of predicted target genes

Functional enrichment analysis of shared target genes between miR-181 members

GO Biological Process

GO Molecular Function

KEGG

Jensen Diseases database

Thirteen mutant variants of the seed region for each miR1-181 family members

)										0									20	l I		
AGU	miR_181b_Wt/1-23	Α.	A	A	Ú	υ	С	А	υı	JG	С	υ	G	U	С	G	G	υ	G	G G	U	
	miR_181b_Mut1/1-23	G	A	A	U	υ	С	А	υı	JG	С	υ	G	υ	С	G	G	υ	G	G G	U	
AGU	miR_181b_Mut2/1-23	А	G 0	A	U	υ	С	А	υı	JG	С	υ	G	υ	С	G	G	υ	G	G G	U	
AGU	miR_181b_Mut3/1-23	Α.	A	G	υ	υ	С	А	υı	JG	С	υ	G	υ	С	G	G	υ	G	G G	U	
AGU	miR_181b_Mut4/1-23	A.	A	A	G	υ	С	А	υı	JG	С	υ	G	υ	С	G	G	υ	G	G G	U	
AGU	miR_181b_Mut5/1-23	G	A	A	G	υ	С	А	υı	JG	С	υ	G	υ	С	G	G	υ	G	G G	U I	
AGU	miR_181b_Mut6/1-23	Α.	AC	A	G	G	С	А	υı	JG	С	υ	G	υ	С	G	G	υ	G	G G	i U	
A <mark>G</mark> U	miR_181b_Mut7/1-23	А	СС	A	U	G	С	А	υı	JG	С	υ	G	υ	С	G	G	υ	G	G G	i U	
AGU	miR_181b_Mut8/1-23	G	<u>c</u> 0	A	U	υ	С	А	υı	JG	С	υ	G	υ	С	G	G	υ	G	G G	U I	
AGU	miR_181b_Mut9/1-23	G	G 0	A	U	G	С	А	υı	JG	С	υ	G	υ	С	G	G	υ	G	G G	U I	
A <mark>G</mark> U	miR_181b_Mut10/1-23	С	A	A	С	υ	С	А	υı	JG	С	υ	G	υ	С	G	G	υ	G	G G	U I	
A <mark>G</mark> U	miR-181b_Mut11/1-23	Α.	ΑA	٩A	U	υ	С	А	υı	JG	С	υ	G	υ	С	G	G	υ	G	G G	U I	
A <mark>G</mark> U	miR_181b_Mut12/1-23	Α.	Αl	JA	U	υ	С	А	υı	JG	С	υ	G	υ	С	G	G	υ	G	G G	U	
AGU	miR_181b_Mut13/1-23	Α.	A	A	U	υ	С	А	υı	JG	С	υ	G	U	С	G	G	υ	G	G G	U	
0									-	0								1	20	1		

AACAUUCAUU<mark>G</mark>UU<mark>G</mark>UC<mark>GGUGGG</mark>U miR_181d_Wt/1-23 A A C A G U C A U U G U U G U C G G U G G G U miR_181d_Mut1/1-23 G A C A G U C A U U G U U G U C G G U G G G U miR_181d_Mut2/1-23 miR_181d_Mut3/1-23 AGCAGUCAUUGUUGUCGGUGGGU G A C A U G C A U U G U U G U C G G U G G G U miR_181d_Mut4/1-23 GACCUUCAUUGUUGUCGGUGGGU miR 181d Mut5/1-23 A A C C U G C A U U G U U G U C G G U G G G U miR_181d_Mut6/1-23 AACGUUCAUUGUUGUCGGUGGGU miR_181d_Mut7/1-23 AACAGCCAUUGUUGUCGGUGGGU miR_181d_Mut8/1-23 miR_181d_Mut9/1-23 GACCUGCAUUGUUGUCGGUGGGU miR_181d_Mut10/1-23 AGCAUGCAUUGUUGUCGGUGGGU miR_181d_Mut11/1-23 AAAAUUCAUUGUUGUCGGUGGGU miR_181d_Mut12/1-23 AAUAUUCAUUGUUGUCGGUGGGU miR 181d Mut13/1-23 AAGAUUCAUUGUUGUCGGUGGGU

10 AACAUUCAACGCUGUCGGUG miR_181a_Wt/1-23 GACAUUCAACGCUGUCGGUG miR_181a_Mut1/1-23 AGCAUUCAACGCUGUCGGUG miR_181a_Mut2/1-23 AACGUUCAACGCUGUCGGUG miR_181a_Mut3/1-23 AACAGUCAACGCUGUCGGUG miR_181a_Mut4/1-23 AACAUGCAACGCUGUCGGUG miR_181a_Mut5/1-23 AACAUUCGACGCUGUCGGUG miR 181a Mut6/1-23 miR_181a_Mut7/1-23 GGCAUUCAACGCUGUCGGUG GACGUUCAACGCUGUCGGUG miR_181a_Mut8/1-23 GACAGUCAACGCUGUCGGUG miR_181a_Mut9/1-23 miR_181a_Mut10/1-23 GACAUGCAACGCUGUCGGUG miR_181a_Mut11/1-23 GACAUUCGACGCUGUCGGUG miR_181a_Mut12/1-23 GACAUUCAGCGCUGUCGGUG miR_181a_Mut13/1-23 AAUAUUCAACGCUGUCGGUG

A A C A U U C A A C C U G U C G G U G A G U miR_181c_Wt/1-22 miR_181c_Mut1/1-22 GACAUUCAACCUGUCGGUGAGU A G C A U U C A A C C U G U C G G U G A G U miR_181c_Mut2/1-22 A A C G U U C A A C C U G U C G G U G A G U miR_181c_Mut3/1-22 AACAGUCAACCUGUCGGUGAGU miR_181c_Mut4/1-22 G G C A U U C A A C C U G U C G G U G A G U miR_181c_Mut5/1-22 GACGUUCAACCUGUCGGUGAGU miR_181c_Mut6/1-22 G A C A G U C A A C C U G U C G G U G A G U miR_181c_Mut7/1-22 AGCGUUCAACCUGUCGGUGAGU miR_181c_Mut8/1-22 A G C A G U C A A C C U G U C G G U G A G U miR_181c_Mut9/1-22 miR_181c_Mut10/1-22 GGCAGUCAACCUGUCGGUGAGU miR_181c_Mut11/1-22 AAAAUUCAACCUGUCGGUGAGU miR-181c_Mut12/1-22 AAUAUUCAACCUGUCGGUGAGU miR 181c Mut13/1-22 AAGAUUCAACCUGUCGGUGAGU

10

Position and type of the

substitution can have a

dramatic effect on the number

and selectivity of predicted

target genes

Mutant variants of miR-181 members adopt diverse secondary structures with distinct number and pattern of predicted targets genes

Predicted targets for specific miR-181 mutant variants include genes with differentially expression patterns in human cancers – TCGA analysis

		LUSC		LUAD		Lower g glioma	grade	Gliobl	astoma	Breast cancer		
miR-181 sequence	Gene name	EXP	FC	EXP	FC	EXP	FC	EXP	FC	EXP	FC	
181a mut3&mut8, 181b mut3, 181c mut3&mut6	RGS5	Down	-5.44	Down	-2.38							
181a mut3&mut8, 181b mut3, 181c mut3&mut6, 181d mut7	SLC4A1	Down	-6.95	Down	-5.53							
181a mut3&mut8.	C5orf34	Up	6.31	Up	4.33							
181b mut3, 181c	CTSE	Down	-12.53									
mut3&mut6, 181d	ENPP5	Down	-3.06									
mut7	LILRB2	Down	-3.34	Down	-2.01							
	LRP1	Down	-2.43	Down	-2.08							
	PLXDC2	Down	-2.27	Down	-2.08							
	SPSB4			Down	-2.49							
181a mut3&mut8.	CBR1	Up	2.35									
181c mut3&mut6, 181d mut7	PNPLA2	Down	-2.68									
181a mut3, 181c mut3, 181d mut7	TRIM5							Up	8.32			
181a	B3GNT5	Up	2.24							Down	-2.87	
WT&mut3&mut8,	MTMR10	Down	-2.13	Down	-2.22							
181b WT&mut3,	TNIK	Down	-3.28	Down	-2.35							
181c	ZNF559									Down	-2.07	
WT&mut3&mut6, 181d WT&mut7	METAP2							Up	2.03			
181c mut8	CDK2AP1							Up	3.53			
	DLK1					Down	-2.20					
	DMD	Down	-3.19	Down	-2.67					Down	-13.97	
	HPS5			Down	-2.30							
	MARVELD3	Up	3.04	Up	2.36	Up	2.55			Up	2.33	
	MATN2			Down	-2.17					Down	-10.89	
	SCNN1A	Down	-2.57									
	SFTPB	Down	-64.75	Down	-5.30							
	SLC6A1	Down	-2.47									
	TBX3	Down	-2.52	Down	-5.08							
	ULBP3	Up	2.46									

LUAD, lung adenocarcinoma; LUSC, lung squamous cell carcinoma; EXP, expression; FC, fold change of expression (malignant vs adjacent normal tissue)

Upregulated genes with oncogenic potential highlighted by TCGA analysis

Gene name	Gene symbol	Cancer type	Oncogenic function	Clinical significance
Chromosome 5 open reading frame 34	C5orf34	LUAD	Activation of MAPK signaling pathway Proliferation and migration	Poor prognosis in LUAD patients
MARVEL domain containing 3	MARVELD3	Colorectal cancer Pancreatic cancer Hepatocellular carcinoma (HCC)	Cell migration and invasion	Poor prognosis in OSCC patients
Cyclin-dependent kinase 2 associated protein 1	CDK2AP1	Glioma	Cell proliferation and tumor growth in xenograft models	Associated with aggressive subtypes and poor prognosis in HCC and prostate cancer
UL16 binding protein 3	ULBP3	Diverse cancer types	Modulation of NK cytotoxic activity	Upregulated levels of cell surface and soluble ULBP3 in cancer patients
Methionyl aminopeptidase 2	METAP2	Fibrosarcoma Melanoma Breast cancer Glioma	Increase of vascular mimicry	
Beta-1,3-N- acetylglucosaminyltransferasee	B3GNT5	Breast cancer Glioma	Cancer cell stemness	

Highlights of the study

- Target genes selectivity by miRNAs might be a function of both sequence composition of the seed region and higher order secondary structure
- Sequence alterations that result in stem structures with a 5' and 3' free arm might increase the selectivity for target genes.
 Sequence composition and length of the free arms could further provide a tuning role.
- Artificial miRNAs with a reduced number of targets enriched in oncogenes might provide novel miRNA-based therapeutics for cancer treatment with less off-target effects

This document was realised with the EEA Financial Mechanism 2014-2021 financial support. Its content (text, photos, videos) does not reflect the official opinion of the Programme Operator, the National Contact Point and the Financial Mechanism Office. Responsibility for the information and views expressed therein lies entirely with the author(s).